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ABSTRACT 

Using Smoothing Techniques to Improve the Performance of 
Hidden Markov’s Models 

by 

Sweatha Boodidhi 

Dr. Kazem Taghva, Examination committee Chair 
Professor of Computer Science 
University Of Nevada Las Vegas 

The result of training a HMM using supervised training is estimated 

probabilities for emissions and transitions. There are two difficulties with 

this approach Firstly, sparse training data causes poor probability 

estimates. Secondly, unseen probabilities have emission probability of 

zero. In this thesis, we report on different smoothing techniques and 

their implementations. We further report on our experimental results 

using standard precision and recall for various smoothing techniques. 
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CHAPTER 1 

INTRODUCTION 

Hidden Markov’s Model (HMM) is a directed graph, with probability 

weighted edges (representing the probability of a transition between the 

source and sink states) where each vertex emits an output symbol when 

entered. HMM can be trained using both supervised training and 

unsupervised training methods. The supervised training uses MLE 

(Maximum Likelihood Estimation) and unsupervised training uses 

Baum-Welch algorithm. 

Supervised training is a training method which estimates both output 

symbols and states sequences. While doing supervised training using 

MLE we face some difficulties. Problems that occur are, Maximum 

Likelihood Estimates (MLE) will sometimes assign a zero probability to 

unseen emission-state combinations. Also, when the training data is 

sparse we cannot obtain good probably estimates. To avoid such 

situations we use Smoothing techniques. 

Take an example of flipping a coin (Heads (H), Tails (T)). The probability 

of heads (H) is p, where p is an unknown and our goal is to estimate p. 

 The obvious approach is to count how many times the coin came up 

heads (H) and divide by the total no. of coin flips.  

p=H/N 

H=Heads 

N=Total number of coin flips 
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If we flip the coin 1000 times and it comes up heads (H) 367 times and 

tails (T) 633 times, it is very reasonable to estimate p as approximately 

0.367. 

p=367/1000=0.367 

Suppose we flip the coin only twice and we get heads (H) both times. 

So H=2 and T=0 then it is reasonable to estimate p as 1.0. 

p=2/2=1. 

The p above is not a good probability estimates. According to the above 

estimate the probability of Tail showing up when a coin is tossed is zero. 

To solve this problem we use different smoothing techniques 

Here in this thesis we will see the different smoothing techniques and 

their effect on the performance on HMM. 

 The uses of smoothing techniques in HMM are when we train a 

HMM using sparse training data, there is no abundant training data and 

have some limited probability estimates for hidden words that have 

emission probabilities of zero. Smoothing techniques in HMM will be 

used to deal these issues. Smoothing is used to deal with the problem of 

zero probabilities that occur due to sparse training data. The term 

smoothing describes techniques for adjusting the maximum likelihood 

estimate of probabilities to produce more accurate probabilities. The 

name smoothing comes from the fact that these techniques tend to make 

distributions more uniform, by adjusting low probabilities such as zero 

probabilities upward, and high probabilities downward. Not only do 
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smoothing methods generally prevent zero probabilities, but they also 

attempt to improve the accuracy of the model as a whole. Whenever a 

probability is estimated from few counts, smoothing has the potential to 

significantly improve estimation [1]. 

 Smoothing is the process of flattering probability distribution so 

that all word sequences can occur with some probability. This often 

involves redistributing weight from high probability regions to zero 

probability regions. 

1.1 Thesis Overview  

This thesis is organized as follows to present the details of HMM, 

Smoothing Techniques, which algorithm work well in which situations, 

and why and conclusion on current work. Chapter 2 provides the 

background of HMM and algorithms used in this work. Chapter 3 

presents about the Smoothing Techniques, different techniques used in 

this work and clear explanation about the Smoothing techniques. 

Chapter 4 discuss about the implementation and usage of algorithms in 

appropriate situations. Chapter 5 presents the results on different 

smoothing techniques. Chapter 6 provides conclusions about the present 

work and recommendations on future work are discussed. 
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CHAPTER 2 

HIDDEN MARKOV MODEL  

Hidden Markov Models (HMM) are powerful statistical models for 

modeling sequential or time-series data, and have been successfully used 

in many tasks such as speech recognition, protein/DNA sequence 

analysis, robot control, and information extraction from text data [2]. 

 The Hidden Markov’s Model (HMM) in abbreviation are called 3D 

three dimensional. 

2.1 Definition of HMM 

“The structure of an HMM model contains states and observations. We 

define HMM as a 5-tuple ( S, V, Π, A, B ), where S={s1,……,sN} is a finite 

set of N states, V={v1,…….,vM} is a set of M possible symbols in a 

vocabulary, Π={Πi} are the initial state probabilities, A={aij} are the state 

transition probabilities, B={ bik(vk) } are the output or emission 

probabilities. We use λ=(Π, A, B) to denote all the parameters”[2]. 

Πi       the probability that the system starts at state i at the beginning  

aij       the probability of going to state j from state i  

bi(vk)   the probability of “generating” symbol vk  at state i 

clearly, we have the following constraints 

� π�
�

���
� 1 

� a�
 � 1 for i � 1,2, … . , N
�


��
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2.1.1 Examples on HMM

 

Figure 1 Example on Hidden 

The above example 

weather and 2 observations Rain and Dry.

Transition probabilities are 

 P(‘Low’ ⁄ ‘Low’)=0.3

 P(‘High’ ⁄ ‘Low’)=0.7

 P(‘Low’ ⁄ ‘High’)=0.2

 P(‘High’ ⁄ ‘High’)=0.8

Observation Probabilities are

 P(‘Rain’ ⁄ ‘Low’)=0.6

5 
 

 

2.1.1 Examples on HMM 

 

Figure 1 Example on Hidden Markov’s Model 

 

above example model has 2 states, Low and High atmosphere 

weather and 2 observations Rain and Dry. 

Transition probabilities are  

⁄ ‘Low’)=0.3 

⁄ ‘Low’)=0.7 

⁄ ‘High’)=0.2 

⁄ ‘High’)=0.8 

Probabilities are 

⁄ ‘Low’)=0.6 

 

model has 2 states, Low and High atmosphere 
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 P(‘Dry’ ⁄ ‘Low’)=0.4 

 P(‘Rain’ ⁄ ‘High’)=0.4 

 P(‘Dry’ ⁄ ‘High’)=0.3 

Initial Probabilities are  

 P(‘Low’)=0.4 

 P(‘High’)=0.6 

Calculation of observation sequence probability 

Suppose we want to calculate a probability of a sequence Observations in 

our example, {‘Dry’,’Rain’} 

Consider all possible hidden state sequences 

 P({‘Dry’,‘Rain’})=P({‘Dry’,‘Rain’},{‘Low’,‘Low’})+P({‘Dry’,‘Rain’},{‘Low’,‘Hi

gh’})+P({‘Dry’,‘Rain’},{‘High’,‘Low’})+P({‘Dry’,‘Rain’},{‘High’,‘High’}) 

Where first term is : 

 P({‘Dry’,‘Rain’},{‘Low’,‘Low’})=P({‘Dry’,‘Rain’}|{‘Low’,‘Low’})  

 P({‘Low’,‘Low’})=P(‘Dry’|‘Low’)  

 P(‘Low’)P(‘Low’|’Low’)=0.4*0.4*0.6*0.4*0.3 

         =0.01152 

2.2 Main Issues Using HMM 

There are three main problems  

1. Evaluation Problem 

2. Decoding  

3. Training  
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2.2.1 Evaluation Problem 

The HMM λ= (Π, A, B) and the observation sequence O=o

calculate the probability that model 

 Here we try to find 

o2 ... oK by means of consider

 For solving evaluation problem

iterative algorithms 

individual algorithms like 

 Forward Evaluation

 Backward Evaluation

Define the forward variable 

observation sequence o

αk(i)= P(o1 o2 ... ok , qk=

Trellis representation of an HMM

 

Figure 2 Trellis Representation of HMM
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2.2.1 Evaluation Problem  

, A, B) and the observation sequence O=o

calculate the probability that model λ has generated sequence  O [2].

to find the probability of an observation s

by means of considering all hidden state sequences.

For solving evaluation problem, we use Forward and Backward 

 for efficient calculations. Here we have to calculate 

individual algorithms like  

Evaluation 

Backward Evaluation 

Define the forward variable αk(i) as the joint probability of the partial 

observation sequence o1 o2 ... ok  and that the hidden state at time k is s

= si ) [5]. 

representation of an HMM 

Figure 2 Trellis Representation of HMM 

, A, B) and the observation sequence O=o1 o2 ... oK , 

 has generated sequence  O [2]. 

sequence O=o1 

ing all hidden state sequences. 

Forward and Backward 

we have to calculate 

(i) as the joint probability of the partial 

and that the hidden state at time k is si  : 
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2.2.1.1 Forward recursion for HMM

Initialization:  

α1(i)= P(o1  , q1 = si ) = 

Forward recursion:  

αk+1(i)= P(o1 o2 ... ok+1 , 

Σi P(o1 o2 ... ok , qk= si) a

For   1<=j<=N, 1<=k<=K

Termination:  

P(o1 o2 ... oK) = Σi P(o1 

 

Figure 3 Forward Recursion of HMM
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2.2.1.1 Forward recursion for HMM 

) = πi bi (o1) , 1<=i<=N.  

 

k+1 , qk+1= sj ) = Σi P(o1 o2 ... ok+1 , qk= si , qk+1=

) aij bj (ok+1 ) = [Σi αk(i) aij ] bj (ok+1 ) ,    

For   1<=j<=N, 1<=k<=K-1. 

1 o2 ... oK , qK= si) = Σi αK(i) [5]page 262-263 [2]page 2

Figure 3 Forward Recursion of HMM 

 

= sj ) =  

263 [2]page 2 
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2.2.1.2 Backward recursion for HMM

Define the forward variable 

observation sequence o

is si  : βk(i)= P(ok+1 ok+2 

Initialization:  

βK(i)= 1  , 1<=i<=N. 

Backward recursion:

βk(j)= P(ok+1 ok+2 ... oK 

=Σi P(ok+2 ok+3 ... oK | q

For   1<=j<=N, 1<=k<=K

Termination:  

P(o1 o2 ... oK) = Σi P(o1 

= Σi β1(i) bi (o1) πi  [5]page 262

 

Figure 4

9 
 

recursion for HMM 

Define the forward variable βk(i) as the joint probability of the partial 

observation sequence ok+1 ok+2 ... oK  given  that the hidden state at time k 

k+2 ... oK |qk= si )  

Backward recursion:  

K | qk= sj ) = Σi P(ok+1 ok+2 ... oK , qk+1= si  | q

qk+1= si) aji bi (ok+1 ) =Σi βk+1(i) aji bi (ok+1 ) , 

For   1<=j<=N, 1<=k<=K-1 

1 o2 ... oK , q1= si) = Σi P(o1 o2 ... oK  |q

[5]page 262-263,   [2]page 3 

Figure 4 Backward Recursion of HMM 

 

(i) as the joint probability of the partial 

given  that the hidden state at time k 

qk= sj )    

) ,  

|q1= si) P(q1= si) 
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2.2.2 Decoding Problem 

Decoding problem. Given the HMM λ= (Π, A, B)   and the observation 

sequence O=o1 o2 ... oK, calculate the most likely sequence of hidden 

states si that produced this observation sequence. 

 We want to find the state sequence Q= q1…qK which maximizes P 

(Q | o1 o2 ... oK), or equivalently P (Q , o1 o2 ... oK ) .  

 Brute force consideration of all paths takes exponential time. To 

solve this issue we can use dynamic programming (DP) techniques that 

optimize the entire process. Viterbi is one such efficient algorithm that 

uses DP and reduces exponential time to linear. 

 Define variable δk(i) as the maximum probability of producing 

observation sequence o1 o2 ... ok  when moving along any hidden state 

sequence q1… qk-1 and getting into qk= si  . 

     δk(i) = max P(q1… qk-1 , qk= si  ,  o1 o2 ... ok)   

     Where max is taken over all possible paths q1… qk-1 . 

2.2.2.1 Viterbi algorithm 

General idea if best path ending in qk= sj goes through qk-1= si then it     

should coincide with best path ending in qk-1=si. 
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δk(i) = max P(q1… qk-1 

maxi [ aij bj (ok )  max P(q

For backtracking best path keep information that predecessor of s

Initialization:  

δ1(i) = max P (q1= si  ,

Forward recursion:  

δk (j)=max P(q1… qk-1 

si  ,  o1 o2 ... ok-1) ] =max

Termination:  choose best path ending at time K

maxi [ δK(i) ]  

Backtracking is the best path.

 This algorithm is similar to the forward recursion of evaluation 

problem, with Σ replaced by max and additional backtracking [7]

11 
 

 

Figure 5 Viterbi Algorithm 

 

1 , qk= sj  ,  o1 o2 ... ok) =  

)  max P(q1… qk-1= si  ,  o1 o2 ... ok-1) ] 

For backtracking best path keep information that predecessor of s

,  o1) = πi bi (o1) , 1<=i<=N. 

 

1 , qk= sj  ,  o1 o2 ... ok)=maxi [aij bj (ok) max P(q

) ] =maxi [ aij bj (ok ) δk-1(i) ] ,     1<=j<=N, 2<=k<=K.

choose best path ending at time K 

he best path. 

This algorithm is similar to the forward recursion of evaluation 

replaced by max and additional backtracking [7]

For backtracking best path keep information that predecessor of sj was si 

) max P(q1… qk-1= 

(i) ] ,     1<=j<=N, 2<=k<=K. 

This algorithm is similar to the forward recursion of evaluation 

replaced by max and additional backtracking [7] 
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2.2.3 Learning Problem 

In learning problem we have both supervised training and unsupervised 

training. Supervised training means MLE (Maximum Likelihood 

Estimation), unsupervised training means Baum-Welch Algorithm. 

 Maximum likelihood estimation in hidden Markov models was first 

investigated by Baum and Petrie [BP66] for finite signal and observation   

states spaces.[9] 

 MLE is a solid tool for learning parameters of a data mining model. 

It is a methodology which tries to do two things. First, it is a reasonably 

well-principled way to work out what computation you should be doing 

when you want to learn some kinds of model from data. Second, it is 

often fairly computationally tractable. In any case, the important thing is 

that in order to understand things like Hidden Markov Models and many 

other things it's going to really help if you're happy with MLE. 

 Learning problem given some training observation sequences O=o1  

o2 ... oK and general structure of HMM (numbers of hidden and visible 

states), determine HMM parameters λ= (Π, A, B) that best fit training 

data, that is maximizes P (O | λ).  

 There is no algorithm producing optimal parameter values.Use 

iterative expectation-maximization algorithm to find local maximum of P 

(O | λ) - Baum-Welch algorithm.  
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2.2.3.1 Maximum Likelihood Estimation 

If training data has information about sequence of hidden states (as in 

word recognition example), then use maximum likelihood estimation of 

parameters.[6] 

 P �S�, S
� � ������ ��  �!"#� ��"# ���� $% � $&  
'� !( "����� ��  �!"#� ��"# ��  �� $%

 

We use maximum likelihood in our thesis. 
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CHAPTER 3 

SMOOTHING 

3.1 What is Smoothing 

In general Smoothing is just a mathematical technique that removes the 

excess data variability while maintaining a correct appraisal and 

smoothing is a data set {Xi, Yi} when it takes the approximation m() in a 

growth such as Yi = m(Xi) + ei and estimated result on smoothing is a 

smooth functional estimates m(). 

 Smoothing is the process of flattering probability distribution so 

that all word sequences can occur with some probability. This often 

involves redistributing weight from high probability regions to zero 

probability regions. 

3.2 Why Smoothing is used in HMM? 

Smoothing is used to improve the probability estimates. 

3.2.1 Where we use Smoothing in HMM? 

The objective of learning is to give high probabilities in training 

documents and the result of learning is estimated probabilities for 

vocabularies and transition. Also, we face some difficulties when sparse 

training data causes poor probabilities estimates. Unseen words have 

emission probabilities of zero.  

“Whenever data sparsity is an issue, smoothing can help performance, 

and data sparsity is almost always an issue in statistical modeling. In the 

extreme case where there is so much training data that all parameters 
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can be accurately trained without smoothing, one can almost always 

expand the model, such as by moving to a higher n-gram model, to 

achieve improved performance. With more parameters data sparsity 

becomes an issue again, but with proper smoothing the models are 

usually more accurate than the original models. Thus, no matter how 

much data one has, smoothing can almost always help performance, and 

for a relatively small effort.” Chen & Goodman (1998)[1] 

 Smoothing is required in maximum likelihood estimation because 

MLE will sometimes assign a ‘0’ probability to unseen emission state 

combination. 

3.2.2 Maximum Likelihood Estimation 

Maximum Likelihood Estimation trains a data in HMM. Maximum 

Likelihood will estimate a transition and emission probabilities are [6]  

P (w ⁄ s)ml=(N(w , s))  ⁄  (N(s))                     

N (w, s) =# of times symbols w is emitted at state s   

N(s) =Total # of symbols emitted by state s. 

Let see an example on MLE on flipping a coin Heads (H) , Tails (T) .  

If we flip a coin twice and head show up twice.  

  P (Head) ml=2 ⁄ 2=1.0 

  P (Tail) ml=0 ⁄ 2=0 

For reducing zero probability for unseen emission state combination we 

use smoothing. 
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3.3 How Smoothing works in HMM 

Smoothing will make certain estimates. An example is provided below to 

explain what they are and how smoothing works in HMM. 

3.3.1 Examples 

3.3.1.1 Example 1 

Flipping a coin Heads (H), Tails (T) for which the probability of heads is p, 

where p is unknown, and our goal is to estimate p.  

The obvious approach is to count how many times the coin came up 

heads and divide by the total number of coin flips. If we flip the coin 

1000 times and it comes up Heads 367 times, and Tails 633 times, it is 

very reasonable to estimate p as approximately 

p=H ⁄ N 

H=Heads 

N=Total number of flip coins 

p=367/1000=0.367. 

3.3.1.2 Example 2 

 Again if we flip the coin only twice and we get heads both times. 

H=2 

T=0 

The approximate estimate value of p is  

P=2 ⁄ 2=1.0. 

P=0 ⁄2=0. 
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3.3.1.3 Example 3 

Again if we flip a coin only twice it seems a bit rash to conclude that the 

coin will always come up Heads and for avoiding such rash we use 

smoothing  

To solve this sparseness problem, there are many different smoothing 

techniques. 

3.4 Smoothing Techniques 

1. Absolute Discounting 

2. Laplace Smoothing 

3. Good-Turing Estimation 

4. Shrinkage 

3.4.1 Absolute Discounting 

We used absolute discounting to smooth emission probabilities. Absolute 

discounting consists of subtracting a small amount of probability p from 

all symbols assigned a non zero probability at states s. Probability p is 

then distributed equally over symbols given zero probability by the MLE. 

If v is number of symbols assigned non zero probability at a state s and N 

is the total number of symbols. [6] 

P)w + s- � .p)w + s-�( 0 p   if P)w + s-�( 1 0 
vp N⁄ 0 v            otherwise 8 

For determining the optimal value p in using �1 +  )T# : v -�  
Where Ts is the total number of symbols emitted by a state s (i.e) the 

denominator of  p)w + s-�(. 
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3.4.2 Laplace Smoothing 

It is also known as Add-One Smoothing, In Laplace Smoothing we have 

to add some of the probabilities for unseen events  

Take an example of flipping a coin. If we flip the coin twice and 

count the number of Heads (H) and Tails (T), if heads come up both the 

times the the probability for tails is zero. To avoid such situations we use 

smoothing. To estimate the value p in Laplace Smoothing we have to 

estimate p=
)�;<-

)=>=?@ ABCDEF >G G@HIJ;|L|-  

P=(1+2) ⁄ (2+2)=0.75 

This rule is equivalent to starting each of our counts at one rather than 0 

this is known as Laplace smoothing.  

To avoid estimating any probabilities to be zero for events never observed 

in the data we do the following in Laplace smoothing 

P)w + s-@?I � )M)w, s- : 1- + )M)N- : OVO- 
where │V│ is the vocabulary size. 

N (w,s)=number of times symbols w is emitted at state s 

N(s) =Total number of symbols emitted by state s. 

3.4.3 Good-Turing Estimation 

The Good-Turing estimate (Good, 1953) is central to many smoothing 

techniques. The general idea of the good turing is reallocate the 

probability mass of n-grams that occurs c times. 

For each count c, we should pretend that it occurs c* times 
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QR �  )Q : 1- MS :  1
MS

 

Where MS is the number of n-grams that occurs exactly c times in the 

training data. 

TUV)W1, … , WX- �  QR)W� , … . . , WA-
M  

N = the original number of counts in the distribution. 

N=∑ MSZS�[ QR �  ∑ )\ : 1-XS;� �  ∑ \XSZS��ZS�[  [1] page8-9  

The Good-Turing estimate cannot be used when nc= 0; it is generally 

necessary to smooth" the nc. 

Example, to adjust the nc so that they are all above zero. Recently, Gale 

and Sampson (1995) have proposed a simple and effective algorithm for 

smoothing these values. In practice, the Good-Turing estimate is not 

used by itself for n-gram smoothing, because it does not include the 

combination of higher-order models with lower-order models necessary 

for good performance. However, it is used as a tool in several smoothing 

techniques. 

3.4.4 Shrinkage 

The Shrinkage is the distribution of a state data towards more rich data 

and it is used for a linear combination of probabilities  

]�^ + _̀ � � � àH
b

H��
T�^ + _̀H�                                                                     

p)W +  S- �  λ�p)W + _�- : λep)^ + _e- : f          
Where S1 is the original state. 
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j is the state and i is the shrinkage ancestor 

S2 is the larger context. 

λ=shrinkage prior 

In smoothing techniques the range of the shrinkage influence is when it 

is used for context distributions not only towards those states but also 

towards similar states with more data. They are three variants of 

shrinkage used in smoothing techniques. 
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CHAPTER 4 

IMPLEMENTATION 

In thesis implementation we first discuss about the MLE. Before telling 

about the MLE we will learn supervised learning.  

4.1 Supervised Learning 

The easiest solution for creating a model λ is to have a large corpus of 

training examples, each annotated with the correct classification. If we 

having such tagged training data we use the approach of supervised 

training. In supervised learning we count frequencies of transmissions 

and emissions to estimate the transmission and emission probabilities of 

the model λ.  

4.1.1 Maximum Likelihood Estimation (MLE) 

MLE is a supervised learning algorithm. In MLE, we estimate the 

parameters of the model by counting the events in the training data. This 

is possible because the training examples for a MLE contain both the 

inputs and outputs of a process. So we can equate inputs to 

observations, and outputs to states and we easily obtain the counts of 

emissions and transitions. These counts can be used to estimate the 

model parameters that represent the process. 

aij = 
# >G =F?AJH=H>AJ GF>C H => ` HA =hE J?CI@E i?=?

=>=?@ # >G =F?AJH=H>A GF>C =hE J=?=E H HA J?CI@E i?=? 

bi (jb) = 
# >G ECHJJH>AJ >G =hE JkCD>@ lm GF>C H HA =hE J?CI@E i?=?

=>=?@ # >G ECHJJH>AJ GF>C =hE J=?=E H HA J?CI@E i?=?  
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There is a possibility of aij or bi (jb) being zero. for example consider the 

case where state si is not visited by the sample training data then aij=0. 

In practice when estimating a HMM from counts it is normally necessary 

to apply smoothing in order to avoid zero counts and improve the 

performance of the model on data not appearing in the training set.  

In the thesis we implemented MLE using the function: 

void CountSequence(char *seqFile);  and 

Parameters : tagged sequence file 

Implementation of MLE involves accumulating the following counts  

-  count how many times it starts with state si 

-  count how many times a particular transition happens 

-  count how many times a particular symbol would be generated 

from a particular state 

- Implementation of MLE is shown in the followng fig 
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Figure 6 Algorithm Counting for in MLE 

 

Using these count relative frequencies are computed to obtain 

parameters of an HMM.  

4.2 Laplace Smoothing 

In Laplace smoothing we avoid zero probabilities for unseen events by 

calculating the probability estimates using the following equations  

Equation for smoothing emission probabilities 

P)w + s-@?I � )M)w, s- : 1- + )M)N- : OVO- 
where │V│ is the vocabulary size. 

N (w,s)=number of times symbols w is emitted at state s 

N(s) =Total number of symbols emitted by state s. 
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Example: 

If two times you toss a coin and head shows up twice 

 P(Head)lap=(2+1) / (2+2)=0.75 

 P(Tail)lap = (0+1)/(2+2) = 0.25  

Equation for transition probabilities  

N(si , sj): Number of times we move from state si to state sj  

N(si): Number of transitions from state si 

V: entire vocabulary (all output symbols) 

aij= P(qt =sj / qt-1 = si) = (N(si , sj) + 1) / (N(si) + |V|) 

In this thesis we implement Laplace Smoothing using function.  

void Model::UpdateParameter(). Implementation of this function shown 

below  

Implementation on Laplace smoothing is show in figure. 

 

 

Figure 7 Screen shot on Laplace smoothing 



www.manaraa.com

25 
 

4.3 Absolute Discounting 

We used absolute discounting to smooth emission probabilities. Absolute 

discounting consists of subtracting a small amount of probability p from 

all symbols assigned a non zero probability at states s. Probability p is 

then distributed equally over symbols given zero probability by the MLE. 

If v is number of symbols assigned non zero probability at a state s and N 

is the total number of symbols. [6] 

P)w + s- � .p)w + s-�( 0 p   if P)w + s-�( 1 0 
vp N⁄ 0 v            otherwise 8 

p)w + s-�( is emission probability.  

V is the number of symbols assigned non zero probability at state s. 

 P= �1 + )T# : v -�  
Ts is the total number of symbols emitted by state s. 

In the thesis we implemented Absolute Discounting using the function 

 

Figure 8 Screen Shot on Absolute Discounting 
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Figure 9 Screen Shot on Absolute Discounting 

 

 

Figure 10 Screen Shot on Absolute Discounting 
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Figure 11 Screen Shot on Absolute Discounting 

 

Figure 12 Screen Shot on Absolute Discounting 
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Figure 13 Screen Shot on Absolute Discounting 

 

We evaluated the performance of Laplace smoothing and Absolute 

discounting by calculating precision and recall on the test data. The 

results obtained are presented in chapter 5. 
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CHAPTER 5 

RESULTS 

5.1 Using HMM Model 

An example will be provided in this chapter while training HMM model to 

explain how it works on example data. In this HMM model, we have a 

number of states, initial probabilities and output probability as shown in 

figure 1. 

5.1.1 HMM Model How it Looks 

N is the number of states, InitPr is Initial probability, Output Pr is 

Output Probability, TransPr is Transition Probability 

 

Figure 14 HMM Model 
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5.1.2 Results on HMM and How it Works 

To run this program we are taking a data of telephone numbers and 

names. 

The figure below shows the training data used in our example, a list of 

phone numbers and names. 

 

 

Figure 15 HMM Model Data 

 

From this given data we have to find the state sequence made of  0 and 1 

where 1 indicates  phone numbers and 0 indicates characters other than 

phone numbers. A continuous sequence of ten numbers is characterized 

as a phone number. 
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Below figure shows about the training data and result of HMM on 

telephone numbers and names. The output of HMM is a tagged sequence 

file which looks like the one shown below. 

 

 

Figure 16 HMM Train Data 

 

After completing the execution on HMM we face some problem for unseen 

events on MLE on state transition probabilities with given sequence for 

observed symbols. For avoiding such situations we are using Smoothing 

concept and different smoothing techniques. 
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5.2 Comparison of Two Smoothing Techniques  

Laplace Smoothing and Absolute Discounting Smoothing are 

implemented in this work. The definition and equation of MLE is 

provided as below. 

MLE is a Maximum Likelihood Estimation and while training HMM we 

face some difficulties in Supervised Training  

5.2.1 Equation on MLE 

P (w ⁄ s)ml=(N(w , s))  ⁄  (N(s)) 

N (w, s) =number of times symbols w is emitted at state s  

N(s) =Total number of symbols emitted by state s.  

5.2.2 Equation on Laplace Smoothing 

P)w + s-@?I � )M)w, s- : 1- + )M)N- : OVO- 
│V│ is the vocabulary size. 

N (w,s)=number of times symbols w is emitted at state s 

N(s) =Total number of symbols emitted by state s 

There is a minute difference exist between equations of MLE and Laplace 

Smoothing. 

5.2.3 Equation on Absolute Discounting 

P)w + s- � .p)w + s-�( 0 p   if P)w + s-�( 1 0 
vp N⁄ 0 v            otherwise 8 

There is no optimal value of p but we can determine p using �1 +  )T# : v -�  
which often gives good results. 

Where Ts is the total number of symbols emitted by a state s (i.e) the  
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denominator of  p)w + s-�(. 

5.3 Results on Laplace Smoothing 

After including Laplace Smoothing in HMM, we see the count sequences 

values for given.  In Figure 4 we see the improvements on output  

 

 

Figure 17 Laplace Smoothing Result 

 

Here in this Figure 4(a) we see the initial state probabilities with states 0 

is 1. In Figure 4(b) we see the Laplace Smoothing with two states 0 and 1 

we get the sum B of state 0 as 1. In Figure 4(c) we can see the sum B of 

state 1 is 1  
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Figure 18 Laplace Smoothing Result 

 

 

Figure 19 Laplace Smoothing Result 

 

5.4 Results on Absolute Discounting 

After including the absolute discounting in HMM we see the initial  

probabilities and state transition with states 0 and 1  
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Figure 20 Absolute Discounting Result 

 

For reducing unseen events in HMM we include Smoothing Techniques 

in HMM training as shown in above Figures. Now we have to calculate 

the precision, recall and harmonic average accuracy for individual 

smoothing techniques to see their effect on HMM. 

The performance of the smoothing techniques is evaluated based on 

standard precision, recall and harmonic average accuracy values [11]. 

Let TP be the number of true positives i.e. the number of documents 

which both experts and HMM agreed as belonging to the phone category.  

Let FP be the number of false positives i.e. the number of documents that 

are wrongly tagged by the HMM as belonging to the tagged sequence. 
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5.5 Precision is defined as 

precision �  TP
TP : FP 

Let FP be the number of False Positive. 

5.6 Recall is defined as 

recall �  TP
TP : FN 

Let FN be the number of False Negative. 

5.7 Harmonic Mean 

The harmonic mean of precision and recall is called the F1 measure is 

defined 

F1=
e

r
stuvwxwyz; r

tuv{||
 

Here In this work, we have to calculate the precision, recall and F1 

values are calculated. The ideal values of precision and recall is 

something which is greater than 0.8 and harmonic mean should be close 

to 1.  

5.8 Results on Evaluation 

After careful calculations on HMM, without using Smoothing techniques 

and including smoothing techniques we have got the following results of 

the testing parameters: 

5.8.1 Without Using Smoothing Techniques  

Precision: 81.05 

Recall: 98.54 

FI: 89.68%  
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5.8.2 Using Smoothing Techniques 

5.8.2.1 Laplace Smoothing 

Precision: 86.05 

Recall: 98.03 

F1:91.7% 

5.8.2.2 Absolute Discounting 

Precision: 90.16 

Recall: 99.8 

F1: 95.2% 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this work, we have measured the performance of two different 

Smoothing Techniques in HMM for a given training data of phone 

numbers. We also compared to performance without being used the 

Smoothing Techniques. The accuracy of the HMM without using any 

Smoothing was found to be 89.68 %. Laplace Smoothing in HMM had an 

accuracy of 91.7% where as Absolute Discounting had 95.21 %. The 

absolute discounting technique of HMM showed better accuracy 

compared to Laplace Smoothing.  

In future work, it might be interesting to implement other 

smoothing techniques and compare their effect on the performance of the 

HMM. Smoothing techniques that gave the best results may be used in 

our HMM to improve the performance of HMM (Hidden Markov’s Model). 
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